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In this paper we present a methodology for rigorous optimization of nonlinear 

programming problems in which the objective function can be represented using black 

box functions. The specific application is process design and operation in which the 

process is modeled using modular process simulators. These models consume large CPU 

time to converge, derivatives are not available, in some cases generate noise, and they are 

seen as black box models. Different techniques are available for replacing those models 

by simpler and computational inexpensive models. In this case a kriging metamodel is 

used to replace them. Kriging has high prediction accuracy and capabilities to estimate 

the prediction variance. Coupled to kriging the “Expected improvement” technique (EI) 

[3] is used to find the global solution for the kriging metamodel. The methodology is 

tested with two mathematical functions, and finally, applied to the optimization of the 

operation parameters of a gas turbine case study, which is simulated using AspenPlus. 

1.   Introduction 

In chemical engineering, many decisions are taken based on the analysis of a 

process model results. Detailed process models are complex to be coded, so 

specialized simulation software packages are used. Most of them have modular 

architectures (Aspen Plus), and they appear to the user as black boxes. They 

consume large CPU time to converge. Moreover, in case of optimization major 

difficulties appear: gradient based optimizers, which try to estimate derivatives, 

end up using noisy estimates because of errors introduced by these simulators 

(e.g. by termination criteria); consequently, their accuracy is affected badly [2].  

 

To tackle this problem the original model is used as “physical experiment” for 

generating data points [5]. These data points are used to construct a simpler but 

accurate model which is called “metamodel” or “surrogate model”. These 

models are accurate empirical approximation describing the relation between 

input variable(s) and response value(s) of a process.  Jones [3] analyzed the most 

types of metamodels and concluded that non-interpolating (regression) 

metamodels are unreliable in optimization, because they do not appropriately 

capture the function shape; it is usually better to use surfaces that interpolate the 
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data with linear combinations of basis functions. Jones [3] shows that even 

when using an interpolating metamodel, exploring the metamodel with an 

arbitrary optimizer can fail even to find local optima. Consequently there is a 

need for optimization techniques that not only consider the metamodel 

prediction but also consider the uncertainty about this prediction [10]. One of 

such techniques is the “maximum expected improvement” which has been 

presented by Schonlau, [9] and Sasena et al. [8], and tested by Jones [3, 4]. In 

this work, an optimization methodology of process operation, in which a 

complex process is modeled by process simulators, is presented. The 

methodology is based on fitting a kriging metamodel for the whole process 

flowsheet and then using the EI improvement technique for optimization. The 

rest of the paper provides an overview of kriging and maximum expected 

improvement technique. The methodology is tested on mathematical functions 

and, finally on a gas turbine case study, modeled using AspenPlus. 

2.   Methodology 

2.1.   Sampling 

The selection of sample points used to construct the metamodel is a key point 

that significantly affects the metamodel prediction accuracy. There are several 

techniques are available, but because sampling is not the main goal of the paper 

we just mention that the Hammersley has been used here because its simplicity. 

2.2.   Kriging 

The kriging assumes a stochastic process, in which the error in the predicted 

values is also a function of the input variables (x). The kriging predictor Ŷ(x) is 
then composed of two parts, a polynomial term f(x) (in most cases f(x) =µ) and a 
departure term Z(x) from that polynomial. So Ŷ(x) = f(x) + Z(x).

 
 

where Z(x) is a stochastic Gaussian process that represents the uncertainty about 
the mean of Y(x) with expected value zero E (Z(x)) =0, and a covariance for two 
points xi , xj calculated as: cov(Z(xi),Z(xj))= σ2 R(xi,xj). σ

2
 is the process variance, 

and R (xi ,xj) is the spatial correlation function (SCF) which is usually selected 
exponential [3,4,7]. The final predictor of the kriging method is given by the 

following equation (1). 
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Where: r is the n×1 vector of correlations R (xnew, xi) between the point to be 
predicted xnew and the sample design points. The mean squared error of the 

predictor is given by: 
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A detailed mathematical derivation can be founded in [3]. Figure 1 shows the 
accuracy of the kriging prediction when tested with Peaks [3] and Branin [2] 
functions and compared with thin plate spline radial basis function (RBF) and 
artificial neural network (ANN) metamodels. 

2.3.   Optimization using the method of Maximum Expected 

Improvement  

The expected improvement (EI) approach uses the expected value of the 

function at a certain untrained data point x, represented by the random variable 
Y(x) which is normally distributed, with the mean equal to the kriging prediction 
at this point Ŷ(x), and variance equal to the kriging estimated variance S2(x). It is 
assumed that the current best minimum value of the objective is Fmin, hence, the 

best current solution is expected to get improvement with by an amount I. The 
expected improvement is given by equation (5), [3].  
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            (3) 

where Φ and φ are the normal cumulative distribution function and density 
function. The EI value at a point x in the metamodel domain is a function of the 
predicted value of the metamodel Ŷ(x), and the estimated kriging variance S(x) at 
this point. Thus the point that maximizes the expected improvement is the point 

in the metamodel domain that has minimum prediction and maximum variance. 

The method has been tested by [6] and [3]; both found that it converges to a 

global optimum. 

 

Figure 1. Leave one out cross validation (LOOCV) of kriging, thin plate spline RBF, and ANN 

metamodels of Branin and Peaks functions. Dotted line shows best possible prediction. 
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2.4.   Algorithm 

The main steps in the proposed algorithm can be summarized as follows: 

Initialization (sampling design and computer experiment) 

1. The process flowsheet is explored to identify the independent variables 

affecting the objective function that will be optimized. 

2. Specify the independent variable bounds (metamodel domain). 

3. Over the metamodel domain, perform a sampling plan x with a specific 
design and certain number of sample points. 

4. Evaluate the model at these sampling points, and get the corresponding 

matrix of observations y. 
Optimization loop 

5. Fit a kriging metamodel by maximizing the likelihood of the observed 

data [x y], obtaining the metamodel parameters. This optimization is 
performed using an SQP based algorithm (fmincon of Matlab). 

6. Maximize the EI and get point x*. This optimization is done using 
simulated annealing. 

7. Evaluate the real model at x* and get y*. 
8. Add the new point [x* y*] to the original matrix of observations [X Y]. 
9. Return to step (5) and continue iteration. 

a. Stop if no further improvement in the objective function value y* 
(the difference between objective value y* in two successive 
iterations is less than specific tolerance) is observed. 

3.   Applications 

3.1.   Mathematical examples  

The methodology has been applied to the Peaks and Branin functions, which are 

a good test functions due to their nonlinearity and multiple peaks and valleys. A 

Hammersley design sample is used to generate 31 points used to fit the kriging 

metamodel. The results are summarized in Table 1, which shows how the 

proposed algorithm provides accurate results with a few number of function 

evaluations. 

 
Table 1 . Results of the optimization algorithm using the Peaks and Branin functions. 

 Global optimum Optimum 

 (proposed 

algorithm) 

Function 

eval. (kriging 

model) 

Function eval., 

(optimization stage) 

Peaks fun. 8.106 (0.009, 1.58) 8.099 (0.004, 1.59) 31 3 

Branin 

fun. 
0.397 (-3.14, 12.27) 0.408 (-3.09, 12.15) 31 11 
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3.2.   Gas turbine  

The methodology has been also applied to the optimization of the operation 

parameters of a gas turbine (GT). The GT cycle is composed by the system of 

compressor-combustion chamber-turbine that uses natural gas. A saturation 

column, before the clean gas combustion, saturates this stream with vapor and 

nitrogen. GT air cooling has been modeled by taking into consideration four 

stages GT, thus the air compressor has been modeled as a four steps process as 

well. The combustion chamber is considered to operate at 15 bars, while air is 

feed to compressor at atmospheric pressure. All turbines and compressors model 

units are taken from the AspenPlus model library and are considered to be 

isentropic. The combustion chamber is modeled as a Gibbs reactor [1]. Each 

corresponding stage could have the same pressure loss or gain ratio, but in this 

case the intermediate pressures have been left unspecified and are subject of 

optimization. The objective function pursued is the maximization of net power 

(NP) obtained, by modifying the cooling air splits fractions and the intermediate 
stage pressures (of compressors and turbines) 

 
Table 2. Results for the Gas Turbine case study optimization. 

 Case 1 

(kriging+EI) 

Case 2 

(kriging) 

Case 3 

(A+SQP) 

SF1  0 0 0.0797 

SF2 0 0.1249 0.1011 

SF3 0 0.1507 0.1000 

SF4 0.11329 0 0.0010 

PC2 8.116 9 4 

PC3 14.921 11.0555 10 

PT2 2.0000 2.8225 3 

PT4 1.21334 0.8764 1.5 

NP 239571 239490 239610 

# metamodel 60 60 0 

# optimization 7 21 293 

 

The algorithm has been tested under three different conditions: 1) optimization 

using kriging and the EI, 2) optimization using kriging, 3) optimization using the 

original AspenPlus model and Matlab’s SQP algorithm. In the 1
st
 and 2

nd
 cases, 

the algorithm uses a Hammersley design of 60 points. The results show a 

significant number of function evaluations in the 3
rd 
case. When using the 

kriging metamodel only (2
nd
 column), the number of function evaluations 

significantly decreased but the optimizer goes to a local optimum, finally when 

using the EI coupled with the kriging metamodel the number of function 
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evaluations is further decreased and also the objective is improved. In case of 

EI, a better solution can be obtained by decreasing the tolerance in the stopping 

criteria in the algorithm (step 9), but the number of evaluations will increase, so 

a trade off should be considered between the optimum accuracy and the 

computational effort. 

4.   Conclusions 

One important goal of using metamodels to replace first principle models is to 

reduce the original model function evaluations (experiments). The EI technique 

shows a great behavior in meeting this goal, in front of other methods currently 

in use. The results clearly show how the use of the proposed methodology 

avoids local optima, provides better solutions and reduces the number of 

required function evaluations. 
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