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ABSTRACT.  

Data-based process fault diagnosis is enhanced by using better characterization of the 

transient stages of the faults. After monitoring Normal operating conditions (NOC) data 

and projecting the model onto Abnormal operating conditions (AOC), statistical indices 

(T2 and Q) are used to characterize fault transient stages by assessing faults’ delay and 

span. Hence, a new NOC PCA model is constructed using a data subset based on the 

transient window and projected onto the NOC and AOC transient data. Model 

construction is finally achieved by applying a classification technique –Artificial Neural 

Networks (ANN) or Support Vector Machines (SVM), which are compared– to the 
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training matrix. Validation is done using simulated on-line data sets and using the 

Tennessee Eastman process as case study. The use of different statistical indices and 

classification methods is exposed and discussed, and the improvement obtained in the 

diagnosis performance is presented and analysed. 

KEYWORDS. Chemical Processes, On-line fault diagnosis, Transient stages, 

Tennessee-Eastman, PCA, ANN, SVM. 

1. Introduction 

Fault diagnosis is a challenging problem in industrial and engineering practice. 

Reliable monitoring and fault diagnosis approaches for industrial systems address 

challenges from false alarms, delayed response and incorrect fault identification. The 

correct diagnosis and prediction of incipient system anomalies reduces operational costs 

and enhances the safety. 

Most of the learning-based fault diagnosis approaches face this problem by using data 

corresponding to the steady state of the faults after their occurrence [1,2,3,4], random 

observations [5,6,7] or considering the immediate sample to the disturbance generation 

but not the real detection time of the fault [8,9]. Nevertheless, scarce attention has been 

paid to the data used for producing the classification models (or the methods used to 

select these data). It is quite common that works reporting interesting results on this 

field hardly mention this point [10,11,12,13,14,15,16,17,18,19]. In addition, many of 

these methods, assume that the process is in a known, well characterized state (e.g., a 

nominal steady state) when diagnosis is started. This assumption may result untenable 

for agile processes that undergo transitions [20]. 

Some approaches to process modelling, alarm management, fault diagnosis and other 

automation systems may be ineffective during transitions because they are usually 
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configured assuming a single state of operation. When the plant moves out of that state, 

these applications may lead to false alarms even when a desired change is occurring. 

Thus, some frameworks have been already developed for managing transitions and 

detecting faults [21,22]. 

In order for an automatic fault diagnosis system to become a practical support tool for 

decision-making during plant operation, on-line detection and identification of the early 

transient stages of the fault evolution is required. Therefore, on-line monitoring of 

transient states is important to detect abnormal events and enable timely recovery. 

Previous attempts to deal with this problem include the determination of detection 

delays using different statistical indexes such as the Hotelling’s T2 and Q statistic in 

Principal Component Analysis (PCA) and Correspondence Analysis [23,24,25,26]. 

This work focuses on data-driven fault diagnosis and addresses the improvement of 

on-line diagnosis performance by introducing a method that takes advantage of transient 

stages data to model faulty / abnormal plant behavior and produce enhanced 

classification models.  

First, a monitoring and detection step is required. PCA has been selected for this first 

step because its effectiveness in detecting process abnormalities and has been applied to 

simulated data in order to obtain the scores (principal component variables that are the 

axes of a new coordinate system and represent the directions of maximum variability), 

the Hotelling’s T squared and Q statistics, and thereby the delays in the fault advent and 

the transition period for their real occurrence.  

In addition, off-line learning of the transient stages during fault evolution is 

implemented. Artificial Neural Networks (ANN) and Support Vector Machines (SVM) 

are used in this work as classification algorithms and are accordingly compared. Then, 

classification models are applied to validation data sets, acquired by simulating the 
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process under Nominal Operation Conditions (NOC) and Abnormal Operation 

Conditions (AOC). Diagnosis is measured considering simulation samples since the 

moment in which the fault is harassed until the end of the simulation as an off-line 

procedure.  

This paper is organized as follows. Problem formulation is next presented in section 

2. Materials and Methods are developed in section 3 including the proposed 

methodology and the case study in which is applied. Section 4 exposes the results. 

Section 5 exposes the main discussions and finally the conclusions of the work are 

presented in the last section.  

2. Problem formulation 

The on-line fault diagnosis problem is presented as follows. First, raw data sets Xi are 

obtained from plant process data corresponding to nv observed variables at ns sampling 

times. It is asummed that each data set Xi corresponds to a certain dynamical regime of 

the plant (or scenario) under normal or abnormal operating conditions (NOC, AOC). In 

particular, AOC regimes include nf faults, which results in a global data set . 

Therefore, { }ns×nv= ;Î
i i

Ω X X ¡ i = 0...nf , where X0 represents process data under 

NOC.  
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The aim of the present method is to develop a novel model-based fault diagnosis 

method using data from transient stages of the fault evolution. Specifically, a 

classification algorithm on a training set TR that takes into account fault transient data 

is used, where { }nt×np= ;Î
i i

TR R R ¡ i = 0...nf , being nt the number of transient 
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observations and np the number of extracted variables. The basic assumption is that the 

use of transient data will improve the data classification performance with respect to 

standard methods that consider data in steady regimes when the fault has already been 

fully developed. A detailed description of the construction of the training set is 

presented in the methodology section. Once the training set is obtained, we construct 

classification models so that they can be applied to on-line data and then detect and 

diagnose any kind of AOC in the process. Such generation of models can be represented 

by the following expression: 

ig ( )=
i i i

M R ,H i =0...nf                                                                                    (2) 

where Ri represents the training data for each scenario i and Hi is an occurrence 

matrix that characterizes the faults occurring at each sample time by means of binary 

elements hsi indicating whether or not a fault is occurring at each sample s [5,27]. 

Mi represents the classification models per each scenario i and the function gi 

represents the calculation of each model by learning algorithms such as ANN and SVM. 

Classification models will be applied to on-line validation sets of a fixed number of 

samples until the end of the simulation in the academic case study. Validation sets are 

joined in the validation (Vi) matrix per scenario for an easier representation. The global 

set of validation matrices is represented by VL. 

Thus, the binary matrix Di, indicating the result of the diagnosis, is obtained from the 

application of all these models to the validation sets Vi.  

i ( ),y=
i i i

D M ,V i =0...nf                                                                                    (3) 

Hence, the diagnosis performance is calculated by means of the F1 index [27,28,29] 

and considering all samples from the  fault occurrence. Such index was selected in order 

to have a single assessment taking into account two complementary concepts: precision 

(positive predictive value) and recall (sensitivity). 



 6 

The problem to be solved is to maximize the matching of matrix Di to matrix Hi 

expressed in terms of the F1 index, and the paper proposes a methodology to produce 

models Mi based on the analysis of transient states that enhances such diagnosis 

performance. 

3. Materials and Methods  

3.1. Methodology 

This work proposes an on-line fault diagnosis methodology for continuous processes 

based on the analysis and characterization of each fault transient stage. A general 

diagram of the construction of the training set TR is described in Fig. 1. The training set 

per class or scenario (Ri) is constructed from the Xi matrices and represents a nt np 

data matrix considering the different nf scenarios to diagnose and the NOC case.  

The methodology takes into account from the process monitoring and fault detection 

up to the identification and diagnosis of the abnormalities in the process.  

First, process data are acquired and organized in Xi sets, where i=0…nf. Centering 

and scaling are applied to the data  as a preprocessing step, rendering as result the 

global set *, where { }ns×nv= ;Î* * *

i i
Ω X X ¡ i = 0...nf . Then, PCA is used in order 

to detect any abnormality in the process by means of statistical indices. Specifically, 

PCA is applied to NOC* set, where { }ns×nv= Î* * *

0 0
NOC X X ¡ and once a detection 

model is obtained, AOC* set { }( )ns×nv= ,Î* * *

i i
AOC X X ¡ i = 1,2...nf  data are 

projected onto such model so that the Tsi
2 and Qsi statistics are obtained. As far as the 

values of these statistical indexes remain within a certain range, the plant is considered 

to be under normal operating conditions. When the indices exceed their control limits, 

the plant is assumed to enter into an anormal dynamical regime.  
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Next stage of the methodology is the construction of classification models taking into 

account the transient stages. Besides, a feature extraction is done before the model 

construction. 

Transient data is represented by the global set , composed of the transient sets XXi 

per each scenario, where { }nt×nv= ;i = 0,1,...nf
i i

ω XX XX Î ¡  and 

{ }= ;nt×nv 0

isv isv ix x s = t + nt - 1; v= 1,...nv; i = 0...nf
i

XX Î ¡ . Thus, 

transient data is given by a transient state window characterized by the corresponding 

samples start (ti0) and a span (nt) that has been assumed common to all the faults. This 

assumption is discussed later on. Starting times and samples ti
0 at which each fault i is 

detected are determined by the indexes Tsi
2 and Qsi as they exceed the control limits: 

  iQQTTst asisi
s

i  220

lim
min                                                                           (4) 

Such transient data subsets allow obtaining a new PCA model, and therefore the P 

loadings, based on transient NOC data (TNOC). These loadings will be projected onto 

TNOC and transient AOC data (TAOC) of the same sample window per fault. The 

results of this projection are the score matrices Ri. Scores matrices are then joined in an 

only matrix TR and used as training set and input of the classification algorithms. 

Parameter tuning of such algorithms is also considered and carried out. Afterwards, the 

classification models Mi are validated using simulated on-line data sets and finally, the 

diagnosis performance is evaluated in terms of the F1 index. 

The next subsections will explain in more detail the two main steps of the 

methodology namely the transient stages identification and the transient-based models 

construction. 
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3.1.1. Process monitoring: characterization of the transient stage and 

transient-based training set construction.  

A process monitoring technique (PCA) is applied to a set of NOC observations (X0). 

Both NOC and AOC data sets { } { }( )= ; =
0 i

NOC X AOC X i = 1...nf , included in 

the global data set  are centered and scaled. Such normalization step renders as result 

the global data set * as previously mentioned, composed of the NOC* and AOC* sets. 

PCA model (P* loadings) is constructed on a centered and scaled NOC data set 

(NOC*=X0
*). Such model is applied to centered and scaled AOC data sets (Xi

*, 

i=1…nf) so that Tsi
2 and Qsi indices are obtained. Such statistical indices are used for 

fault detection when the AOC* data (Xi
*) are projected with the constructed PCA model 

(P*) and Tsi
2 and Qsi overstep their control limits Tlim

2 and Qa. Even more, these Tsi
2 and 

Qsi indices allow determining fault detection delays and the right moment in which a 

process disturbance is developing and expressing itself in the process. In this way, the 

starting point of the transient stage (ti
0) is also identified. Tsi

2 and Qsi indices are unifyed 

respectively in the T and Q matrices as shown in Figure 1. 

Regarding both monitoring and fault detection indices, Q is faster than T2 in detecting 

the delay from the fault event to the moment in which there is statistical evidence of the 

fault in the plant data as it will be corroborated in the results section. This is due to the 

fact that AOC data are not included in the PCA model in terms of monitoring and in 

addition, Q statistic is used to detect new events that are not taken into account in the 

model subspace [34]. 

 PCA is also used as a feature extraction technique that allows reducing data 

dimensionality. The target consists on taking the observations just in the point where the 

abnormality is detected by the Q statistic until a certain sample window (nt). The nt 
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used in this work is assumed to be the same for all faults. Seemingly, the value adopted 

has been decided after some preliminary assays commented later on.  

Transient data sets under NOC and AOC (TNOC and TAOC sets from now on) are 

gathered in a whole transient set () for representation purposes.  

A second PCA model is constructed again taking NOC data (X0), but this time using 

nt observations, giving as result the TNOC set { }( )=
0

TNOC XX . Therefore, the 

dimensions of this matrix XX0 will be nt×nv (number of transient observations times 

number of variables). As in the previous step, these data are centered and scaled, 

representing the TNOC* set (TNOC*=XX0
*). PCA loadings (P) are obtained from 

applying PCA to these normalized data XX0
*.  A NOC scores matrix (R0) is obtained 

when the normalized NOC data set (XX0
*) is projected onto the PCA model by means 

of this equation 
*

0 0R XX P= ´ . 

In the same way, AOC data sets are constructed considering the transient window 

when taking the nt number of samples from the historic data sets Xi and starting with 

the observation where the anomaly is properly detected by the Q statistic. These 

transient data sets are represented by the TAOC set { }( )=
i

TAOC XX i = 1,...nf . 

Such AOC transient data sets (XXi) are also centered and scaled and joined in the 

TAOC* set, where { }( )=* *

i
TAOC XX i = 1,...nf . Both TNOC* and TAOC* sets 

are also gathered in the (*) set as is represented in Figure 1. 

XXi
* matrices are then projected onto the PCA model (P loadings) so as to obtain 

AOC score matrices (Ri, i=1…nf) by means of the same expression used for the NOC 

score matrix ( )*

i iR XX P= ´ . 

Unifying the scores matrices for both NOC and AOC cases: 
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{ }iR = r r ;ns×np 0

isp isp is = t + nt - 1; p = 1,...np; i = 0...nfÎ ¡ .  

where np < nv represents the reduced number of extracted variables or specifically the 

retained principal components.  

Training set (TR) is then obtained by gathering all the previous score matrices Ri 

{ }( )nt×np= , i = 0,1,2...nf
i i

TR R R Î ¡  and used as the input of the classification 

algorithms.  

In the next paragraphs the calculation of the Q and Hotelling T2 statistics is explained. 

Suppose that s samples are available and that v is the number of measured variables in 

each sample. Let x and S be the sample mean vector and covariance matrix, 

respectively, of these observations. The Hotelling T2 statistic is defined in the following 

way: 

   XXSXXT  12 '                                                                                             (5) 

and the corresponding upper control limit (Tlim
2) for this statistic [30] is: 

( )( )2

lim ,v,s v2

v s 1 s 1
T F

s sv
a -

+ -
=

-
                                                                                         (6) 

On the other hand, the Q plot, which is calculated with the sum of the squared 

residuals, represents the squared distance of each observation to this plane [31]. Q 

statistic calculation is given by eq 7. 

  ',
1

2
RPXeveQ

v

v

m 


                                                                                   (7) 

Where P is the component matrix (loading matrix or eigenvectors matrix) and R is the 

scores matrix obtained by the product of the data matrices X times P. In fact, the scores 

plot presents the projection of each observation onto the reduced plane defined by the 

principal components. The control limit of Q statistic (Qα) is calculated according to the 

equation in [32]. 
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Where  represents the eigenvalues. Both T2 and Q statistics are indicators of 

processes “normality” when their values are below the control limits (Q ≤ Qa and T2 ≤ 

Tlim
2) and they are used to determine the transient stages of the process when occurring 

faults. The Q statistic specifically quantifies the lack of fit between the sample and the 

model and denotes the distance of the sample from the nominal operation surface [33]. 

3.1.2. Plant fault modeling 

Classification models for each scenario (Mi) are constructed by off-line learning of 

the fault transient stages once these stages have been located using the PCA indices. 

This step constitutes the data-driven modeling from the training data. 

The models for the classification of faults, properly called fault diagnosis, are 

obtained using standard machine-learning algorithms (ANN, SVM) as classification 

techniques. The input of the algorithms is the training set TR, obtained by gathering the 

score matrices Ri, as mentioned in the last subsection. The structure of the ANN and the 

kernel function in SVM must be fixed. Both techniques are applied with comparative 

purposes. 

The parameters to decide when using ANN are the number of input nodes, the number 

of hidden nodes and the transfer function in the layer (typically tangent sigmoidal 

function). The number of inputs will depend on the number of PC to retain; on the other 

hand, the number of hidden nodes can be optimized. Regarding SVM, support vectors 

per class are obtained for each type of kernel so that the one with the best performance 

is selected. 
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Finally, the network and the support vector models are submitted to on-line validation 

data sets (Vi) obtained by simulations establishing the number of samples in which the 

classifiers will be applied. In fact, the real validation sets (TTi ) are constituted by the 

score matrices (TTi=Vi´ P) obtained from the projection of these original validation 

data sets onto the NOC PCA model (P loadings). Validation score matrices TTi are 

gathered into a global test set (τ). 

This situation simulates the reality of continuous processes, for which monitoring, 

detection and diagnosis (model application) tasks have to be implemented with data that 

are being obtained on-line. An important decision to be made for the prompt 

abnormality detection is to choose the number of observations to use for validating the 

models or network. The diagnosis performance is calculated with the F1 index in an off-

line manner as mentioned in section 2. 

3.2. Case study 

The proposed fault diagnosis method is tested using the Tennessee Eastman Process 

(TEP) [35] and applied to all the faults presented there. TEP consists of 52 process 

variables (nv=52) and 20 faults (nf=20) to be diagnosed. Only 11 of these process 

variables are manipulated (XMV as originally reported), while the rest are simply 

measured (41 XMEAS according to the same nomenclature). Process variables are 

given in Table 1. Table 2 provides the account of the 20 faults or disturbances including 

those not described and reported as unknown in the original paper (faults 16 to 20). 

Some faults are quite comparable and they only differ on the type of variation (step or 

random, which is the case of Fault 3 and 9). 

Fifty-hour simulation runs having the fault occurred by the second hour have been run 

for obtaining source data sets (Xi, where i=0,1,...20) at a sampling time of one minute 

(Xi
*Î R3000´ 52). The PCA model is obtained using these observations of the process 
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under NOC, previously centered and scaled. Then, the model is projected for 

monitoring purposes not only to these NOC data but also to the AOC observations in 

order to obtain the T2 and Q statistics for each state of the process (Tsi
2 and Qsi), and 

thereby identify the fault delays and the transient stages.  

Classification models are constructed with observations since the sample where faults 

are detected by the Q statistic and first considering a nt=200 samples per scenario. PCA 

is applied to the centered and scaled 200 observations corresponding to the process 

under NOC and the corresponding 200 observations per fault (XXi
*Î R200´ 52, i=0...nf) 

are projected onto the resulted PCA model so that the score matrices are obtained (Ri). 

These matrices constitute the training set (TR), composed of 2200 observations, which 

is the input of the classification algorithms (ANN and SVM). 

A comparison between the diagnosis results obtained using transient models (TRM, 

those obtained by means of the approach introduced in this paper) and steady-state 

models (SSM, those obtained with random observations, observations from the 

immediate time of the harrassed fault and observations from the steady state) is next 

addressed and presented in the results section. Such models are applied to on-line 

validation sets of ten samples during a simulation of 500 samples, corresponding to 500 

minutes of faulty state (ViÎ R500´ 52, i=0...nf).  

Regarding execution, the PCA model used in this work was implemented in Matlab. 

ANN and SVMlight [36] were also applied using the standard Matlab toolboxes: Neural 

Network and MATLAB MEX-interface. 

4. Results 

4.1. Characterization of the transient regime 

PCA model is constructed with the raw data sets under NOC. Two principal 

components are retained by the broken-stick rule (26% of variance in the original nv). 
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Such model is then projected into normalized data sets under NOC and AOC with the 

fault produced at second hour. Therefore, T2 and Q statistics are calculated. Figure 2 

shows the T2 values for some faults and figure 3 shows the Q values for the same 

process situations including their respective control limits CL (Tlim
2=9.2 and Qα=66.7). 

Table 4 and figure 4 show the delays of the twenty-fault occurrence considering both 

statistics. Moreover, figure 5 shows clearly the delays for some faults given by the 

overstep in the Q statistic. These results corroborate that for most of the faults, Q 

statistic detects such disturbances at earlier times in comparison to T2. For that reason, 

models will be constructed since the observation in which Q statistic is over the control 

limit. 

In addition, some tests showed that the delay times do not change when varying the 

simulation time or the time at which the fault is generated. 

4.2. Selection of the transient data window and retained components 

Once the transient stages have been localized and we know where we will take data 

from, classification models can be constructed. ANN and SVM were used in this work 

as previously mentioned.  

The network structure consisted of 31 input nodes because we wanted retaining the 

more percentage of the original variance (97%). 2200 observations in the training 

matrix TR were used as inputs because of cost computational restrictions when 

employing more than these observations for creating the models or networks. The 

number of hidden nodes was optimized, being six the one that rendered the best 

classification performance. A tangent sigmoidal transfer function was used with 20 

output nodes in the network with which validation data are classified. Therefore, the 

network structure is 31-6-20. 
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Regarding SVM, the kernel function that rendered the highest diagnosis performance 

was the polynomial function of fourth degree. A study of the data window in the 

training set was executed with 200, 300, 400 and 500 samples and 31 components. 

Columns 2 to 5 of Table 4 show these results that clearly inform that the best number of 

observations for constructing the classification models is 400. This represents a 87% 

reduction of the original data set (ns=3000). Further work regarding nt should obviously 

include the consideration of the tuning of such a value for each faulty scenario i. 

In addition, the number of components was also studied for the established four 

hundred observations (from the score matrices Ri) per class by retaining the 97% (31 

components), 90% (26 components) and 80% (19 components) of variance in the 

original attributes or variables. These results are presented in the last columns of Table 

4 reporting that the best number of components is 31, representing a 97% of retained 

variance. 

Figure 6 shows the F1 diagnosis performance, broken down in Precision and Recall, 

for this model using 400 observations and 31 components or variables, which 

demonstrated to render the best diagnosis performance by using SVM and taking the 

transient regimes, localized with the Q statistic, as input data. 

4.3. Comparison between transient models and steady state based 

features 

As it was mentioned before, a comparison between classification models is done in 

this work. 

Table 5 shows the diagnosis performance in terms of F1 index for these listed models 

and applying ANN as classification algorithm:  

 Using observations from the period of time where faults are completely developed 

 Using observations from the starting period of the fault since the moment in which 

is generated. 
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 Using a set of randomly chosen observations 

 Using transient observations starting when the Q statistic exceeds its control limit. 

 Using transient observations starting when the T2 exceeds its control limit. 

All these models are constructed with 200 observations in the training matrix because 

of cost computational restrictions with ANN and for being able to reproduce the same 

results changing the classification method such as SVM. A previous test with Q statistic 

model employing 200 observations per class or scenario showed that retaining 31 

components resulted in a higher performance than retaining 26. Models are validated on 

the five hundred total observations for calculating the diagnosis performance as an off-

line calculation. ANN structure is 31-6-20 as reported in section 4.2 

Table 6 reports the results for the same models applying SVM with fourth polynomial 

kernel for comparative purposes. From the results in Table 5 and 6, we can conclude 

that the best diagnosis performance is obtained with those models that take into account 

the transient stages by using Q or T2 statistics. Figure 7 represents all these models in a 

ROC diagram, which is a graphical plot of the sensitivity or true positive rate (recall) 

against false positive rate. 

 The model that presented the highest performance is the one constructed with 400 

observations and 31 components, as shown in Table 4. 

5. Discussion 

Results show that the models considering the transient stages of faults (specifically 

the right moment in which the fault is detected by statistic indices) render better 

diagnosis performance in comparison to those including observations in the steady state 

of the fault or random observations. 

Q statistic is faster than T2 detecting AOC observations. In consequence, time delays 

are shorter with Q statistic, providing a better method to identify transient stages of the 
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fault evolution. On the other hand, diagnosis performance obtained applying models 

that take into account since the observation where faults are really detected by the Q 

statistic is a little bit lower than the diagnosis performance with models considering T2 

statistic instead of Q. 

The T2 statistic monitors systematic variations in the PC subspace, while the Q 

statistic represents variations not explained by the retained PCs. That is, faults in the 

process that violate the normal correlation of variables are detected in the PC subspace 

by the T2 statistic, whereas faults that violate the PCA models are detected in the 

residual space by the Q statistic, which is therefore used to detect new events not taken 

into account in the model subspace [34]. 

The previous statement explains the fact that Q statistic detects faults more rapidly 

than T2 when there are only two PC retained representing a 26% of variance. However, 

classification models are constructed using 31 components or features retaining the 97% 

of variance in the original process variables and this is why diagnosis performance is a 

bit higher with models taking into account T2 delays. 

In conclusion, for this case study, most of the faults are detected in the principal 

component subspace. As another evidence, a PCA model retaining the 97% of variance 

is generated an applied again to the raw data sets under NOC and AOC so that the 

delays in detection can be obtained and compared with the previous ones. Results in 

Table 7 show that the delays are diminished much more in the case of T2. Even more, 

whether models are constructed based on these delays as transient stages, the diagnosis 

performance can slightly improve. Table 8 shows a comparison between two models 

based on the difference of delays and transient stages with T2 and applying ANN. The 

table shows that retaining more principal components leads to better models in terms of 

diagnosis performance and that for this case study where most of faults are in the PC 
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subspace, models taking into account the transient stages defined by the T2 statistic are 

the best ones. 

It is worth mentioning that there are no significative deviations in performance when 

SVM or ANN are applied as classification algorithms and their models are validated on 

the same test sets. The main difference consists on higher diagnosis performances for 

SVM and no computational restrictions by processing data in comparison to ANN. This 

reveals the potential of taking into account transient stages when constructing 

classification models and validates the proposed approach regardless the learning 

method to apply. 

6. Conclusions 

An on-line fault diagnosis method based on data-driven models is proposed. The 

milestone is the detection of transient stages during the evolution of process 

abnormalities as well as the use of such dynamical information for constructing 

enhanced classification models. PCA is not only used for obtaining delays in the fault 

detection and therefore the faults transient stages, but also as a feature extraction 

technique for dimensionality reduction, gathering the projections (score matrices) in the 

training set, which is the input of the classification or fault diagnosis techniques. Delays 

are the same no matter the fault is produced at different times in a process simulation.  

ANN and SVM are both applied in this work and a parameter tuning step is done for 

determining the network structure and the kernel function that give the highest 

performance. 

The method is tested with the Tennessee Eastman benchmark considering all the 20 

faults reported in the case study and a comparison among different data-models is 

covered. These models consist of that using a) data from periods at which the fault is 

fully developed, b) data from the period at which the faults are generated but not 



 19 

necessarily detected and c) random observations. Hence, the advantage of a method 

considering and characterizing the faulty transient stages and providing sensible data for 

construction is demonstrated in terms of the enhanced diagnosis performance obtained. 

This has been also corroborated regardless the learning algorithm (ANN, SVM) 

employed. 

The potential of the entire approach, however, may be considered no fully exploited 

since some tuning opportunities exist that have not been considered, as it has been 

discussed. 
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Table 1. Process variables of the TE benchmark 

ATTRIBUTE VARIABLE NAME VARIABLE TYPE 

1 COMPONENT “A” FEED FLOW (STREAM 1) MEASURED 

2 COMPONENT “D” FEED FLOW (STREAM 2) MEASURED 

3 COMPONENT “E” FEED FLOW (STREAM 3) MEASURED 

4 COMPONENTS “A” AND “C” FEED FLOW (STREAM 

4) 

MEASURED 

5 RECYCLE FLOW FROM SEPARATOR (STREAM 8) MEASURED 

6 REACTOR FEED RATE (STREAM 6) MEASURED 

7 REACTOR PRESSURE MEASURED 

8 REACTOR LEVEL MEASURED 

9 REACTOR TEMPERATURE MEASURED 

10 PURGE RATE (STREAM 9) MEASURED 

11 PRODUCT SEPARATOR TEMPERATURE MEASURED 

12 PRODUCT SEPARATOR LEVEL MEASURED 

13 PRODUCT SEPARATOR PRESSURE MEASURED 

14 PRODUCT SEPARATOR UNDERFLOW (STREAM 10) MEASURED 

15 STRIPPER LEVEL MEASURED 

16 STRIPPER PRESSURE MEASURED 

17 STRIPPER UNDERFLOW (STREAM 11) MEASURED 

18 STRIPPER TEMPERATURE MEASURED 

19 STRIPPER STEAM FLOW MEASURED 

20 COMPRESSOR WORK MEASURED 

21 REACTOR COOLING WATER OUTLET 

TEMPERATURE 

MEASURED 

22 CONDENSER COOLING WATER OUTLET 

TEMPERATURE 

MEASURED 

23 COMPOSITION OF “A” IN REACTOR FEED MEASURED 

24 COMPOSITION OF “B” IN REACTOR FEED MEASURED 

25 COMPOSITION OF “C” IN REACTOR FEED MEASURED 

26 COMPOSITION OF “D” IN REACTOR FEED MEASURED 

27 COMPOSITION OF “E” IN REACTOR FEED MEASURED 

28 COMPOSITION OF “F” IN REACTOR FEED MEASURED 

29 COMPOSITION OF “A” IN PURGE GAS FLOW MEASURED 

30 COMPOSITION OF “B” IN PURGE GAS FLOW MEASURED 

31 COMPOSITION OF “C” IN PURGE GAS FLOW MEASURED 

32 COMPOSITION OF “D” IN PURGE GAS FLOW MEASURED 

33 COMPOSITION OF “E” IN PURGE GAS FLOW MEASURED 

34 COMPOSITION OF “F” IN PURGE GAS FLOW MEASURED 

35 COMPOSITION OF “G” IN PURGE GAS FLOW MEASURED 

36 COMPOSITION OF “H” IN PURGE GAS FLOW MEASURED 

37 COMPOSITION OF “D” IN PRODUCT FLOW MEASURED 

38 COMPOSITION OF “E” IN PRODUCT FLOW MEASURED 

39 COMPOSITION OF “F” IN PRODUCT FLOW MEASURED 
40 COMPOSITION OF “G” IN PRODUCT FLOW MEASURED 

41 COMPOSITION OF “H” IN PRODUCT FLOW MEASURED 
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42 D FEED FLOW MANIPULATED 

43 E FEED FLOW MANIPULATED 

44 A FEED FLOW MANIPULATED 

45 “A” AND “C” FEED FLOW MANIPULATED 

46 COMPRESSOR RECYCLE VALVE MANIPULATED 

47 PURGE VALVE MANIPULATED 

48 SEPARATOR POT LIQUID FLOW MANIPULATED 

49 STRIPPER LIQUID PRODUCT FLOW MANIPULATED 

50 STRIPPER STEAM VALVE MANIPULATED 

51 REACTOR COOLING WATER FLOW MANIPULATED 

52 CONDENSER COOLING WATER FLOW MANIPULATED 

 

Table 2. Process disturbances in the TE 

FAULT PROCESS VARIABLE TYPE 

1 
A/C FEED RATIO, B COMPOSITION CONSTANT 

(STREAM 4) 
STEP 

2 B COMPOSITION, A/C RATIO CONSTANT (STREAM 4) STEP 

3 D FEED TEMPERATURE (STREAM 2) STEP 

4 REACTOR COOLING WATER INLET TEMPERATURE STEP 

5 CONDENSER COOLING WATER INLET TEMPERATURE STEP 

6 A FEED LOSS (STREAM 1) STEP 

7 
C HEADER PRES. LOSS – REDUCED AVAILABILITY 

(STREAM 4) 
STEP 

8 A, B, C, FEED COMPOSITION (STREAM 4) 
RANDOM 

VARIATION 

9 D FEED TEMPERATURE (STREAM 2) 
RANDOM 

VARIATION 

10 C FEED TEMPERATURE (STREAM 4) 
RANDOM 

VARIATION 

11 REACTOR COOLING WATER INLET TEMPERATURE 
RANDOM 

VARIATION 

12 CONDENSER COOLING WATER INLET TEMPERATURE 
RANDOM 

VARIATION 

13 REACTION KINETICS SLOW DRIFT 

14 REACTOR COOLING WATER VALVE STICKING 

15 CONDENSER COOLING WATER VALVE STICKING 

16 UNKNOWN UNKNOWN 

17 UNKNOWN UNKNOWN 

18 UNKNOWN UNKNOWN 

19 UNKNOWN UNKNOWN 

20 UNKNOWN UNKNOWN 
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Table 3. Fault detection delays in minutes 

FAULT 
Delays (min) 

According to T2 

Delays (min) 

According to Q 

1 15 5 

2 33 16 

3 283 64 

4 2 1 

5 292 8 

6 20 1 

7 1 1 

8 30 20 

9 271 64 

10 563 33 

11 9 7 

12 316 61 

13 167 64 

14 283 5 

15 292 309 

16 30 13 

17 83 64 

18 300 64 

19 258 64 

20 171 64 
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Table 4: Optimization of the data window and PC in the classification models using 

SVM and the model that takes into account the delays given by the Q statistic 

 

FAULT 

MODEL BASED ON 

31 COMPONENTS 400 SAMPLES 

200 

samples 

300 

samples 

400 

samples 

500 

samples 26 comp 19 comp 

1 89.2 89.2 90.1 89.8 88.9 51.1 

2 94.5 95.7 95.8 96 95.8 95.7 

3 34.2 47.2 53.1 53.9 51.9 51.1 

4 66.6 76.8 90.8 91.9 83.5 83.5 

5 2.2 2.7 15.8 18.9 16.9 20.1 

6 99.9 99.9 99.4 99.9 99.1 78.3 

7 99.9 99.9 97.6 99.9 99.9 99.9 

8 42.8 57.5 60 64.5 56.8 53.9 

9 32.3 44.8 52.8 0 49.6 49.2 

10 62.4 72.4 84 76.4 83 80.2 

11 42.9 53 73.2 81.7 72.8 65.7 

12 36.1 59.2 71.1 17.7 0 16.4 

13 33.7 12.8 61.9 12.7 68.3 13.9 

14 39.8 41.3 48.9 58.9 36.5 21.7 

15 16.7 19.9 23.9 24.4 23.6 24.4 

16 71.6 74.4 80 90 81.9 82.8 

17 68.5 83.1 86.2 86.1 84.9 85.4 

18 0.5 50.8 14.3 11.4 21.5 14.5 

19 38.1 59.8 69.9 70.8 67.3 51.5 

20 39.2 48.7 17.6 47.1 13.7 32.6 

0 14.7 5.3 6.9 0 0 0.4 

Mean 50.5 59.4 64.3 59.6 59.8 53.6 
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Table 5: Comparison among models constructed by ANN in terms of F1 index 

 

FAULT 

 

Model based on 

Developed 

faults 

Starting 

period of 

the fault Random T2 statisic Q statistic 

1 0 57.4 86 55.6 59.8 

2 79.1 63 86 74 83.4 

3 0 0 0 0 0 

4 0 53.3 0 79.7 73 

5 12.1 0 0 0 0 

6 10.2 69.7 99.6 61.2 99.9 

7 0 67.6 54.9 92.8 67.4 

8 8 0 47.4 34.5 38 

9 0 0 0 0 0 

10 0 28.7 0.2 0 63.6 

11 14.7 35.1 35.8 45.3 34.8 

12 0 0 0 25.4 23.2 

13 0 20.6 31.1 25.6 21.4 

14 0 3.1 0 41 0 

15 0 0 0 0 0 

16 11.2 0 0 49 72.1 

17 9 15.2 69.2 86.3 51.8 

18 0 6.1 62.5 64.4 0 

19 0 0 0 18.9 0 

20 6.4 36.5 43.8 7.9 45.4 

0 0 14.4 0 17.8 17.1 

Mean        7.5 22.8 30.8 38.1 36.7 
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Table 6: Comparison among models constructed by SVM in terms of F1 index 

FAULT 

 

Model based on 

Developed 

faults 

Starting 

period of 

the fault Random T2 statisic Q statistic 

1 0 82.4 0 83.2 89.2 

2 0 69.6 10 93 94.5 

3 15.2 26.4 22.6 31.9 34.2 

4 66.5 67.1 57.6 72 66.6 

5 17 4.2 23.5 14.2 2.2 

6 0 99.6 0 99.1 99.9 

7 0 77.7 0 88.2 99.9 

8 9.1 30.6 16.4 46 42.8 

9 4.3 20.6 7.7 32.6 32.3 

10 13.9 41.2 29.9 19.9 62.4 

11 30.3 12.2 47.9 51.2 42.9 

12 28.4 16 17.7 21.4 36.1 

13 9.1 5.3 9.6 56.3 33.7 

14 36.2 31.8 32.3 47.9 39.8 

15 15 17.3 17.4 25.2 16.7 

16 38.5 74.2 10.7 83.1 71.6 

17 9.1 16.7 41.6 84.1 68.5 

18 9.1 3.8 33.1 53.3 0.5 

19 0 30.4 29 50.7 38.2 

20 10.4 10.5 12.8 45.7 39.2 

0 0 0 0 18.8 14.7 

Mean 15.6 36.9 21 55 50.6 
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Table 7: Detection delays with PCA models retaining 26% (broken-stick rule) and 97% 

of variance 

FAULTS 

 

DELAYS IN MINUTES 

2 PC's  

(26% var) 

35 PC's 

(97% var) 

2 PC's 

(26% var) 

35 PC's 

(97% var) 

T2 T2 Q Q 

1 15 5 5 4 

2 33 16 16 15 

3 283 440 64 228 

4 2 1 1 1 

5 292 8 8 2 

6 20 1 1 1 

7 1 1 1 1 

8 30 20 20 19 

9 271 440 64 115 

10 563 61 33 29 

11 9 7 7 7 

12 316 61 61 23 

13 167 90 64 162 

14 283 5 5 2 

15 292 90 309 458 

16 30 13 13 17 

17 83 80 64 70 

18 300 90 64 286 

19 258 69 64 27 

20 171 90 64 132 
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Table 8: Diagnosis performance for models based on the T2 statisic 

 

FAULT 

F1 index 

Retained variance with 

PCA model 

26% var 97% var 

1 55.6 83.2 

2 74.0 67.3 

3 0 0 

4 79.7 75.9 

5 0 8 

6 61.2 48.9 

7 92.8 87.4 

8 34.5 20.0 

9 0 3.7 

10 0 68.0 

11 45.3 21.0 

12 25.4 30.6 

13 25.6 30.9 

14 41.0 39.2 

15 0 0 

16 49.0 77.8 

17 86.3 80.4 

18 64.4 0 

19 18.9 0 

20 7.9 45.9 

0 17.8 0 

Mean 38.1 39.4 
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Figure 1. On-line fault diagnosis methodology based on transient stages models. 
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Figure 2. Hotelling T2 for some faults of the TE process. The vertical line indicates the 

point where the fault is produced. 

 
Figure 3. Q statistic for some faults of the TE process. The vertical line indicates the 

point where the fault is produced. 
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Figure 4. Faults delays in minutes using both T2 and Q statistic indices. 

 

Figure 5. Q statistic for some faults showing their delays in minutes. 
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Figure 6. F1 index for the model created with 400 data in the transient regime and 31 

variables by applying SVM, indicating Precision an Recall proportions in the F1. 

 

Figure 7. ROC diagram for some classification models using ANN and SVM. 


