
Fault diagnosis of a benchmark fermentation process. A comparative study of feature extraction and 

classification techniques 

Isaac Monroy,a* Kris Villez,b Moisès Graells,a Venkat Venkatasubramanianb 

aChemical Engineering Department (DEQ)-CEPIMA. Universitat Politècnica de Catalunya. EUETIB Comte 

d’Urgell 187, 08036 Barcelona, Spain; telephone: +34 934137275. 

bLaboratory for Intelligent Process Systems, School of Chemical Engineering, Purdue University, West 

Lafayette, IN 47907, USA. 

[isaac.monroy@upc.edu*, kvillez@purdue.edu, moises.graells@upc.edu, venkat@purdue.edu] 

 

Abstract 

This paper investigates fault diagnosis in batch processes and presents a comparative study of feature extraction 

and classification techniques applied to a specific biotechnological case study: the fermentation process model 

by Birol, Ündey and Çinar (2002), which is a benchmark for advanced batch process monitoring, diagnosis and 

control. Fault diagnosis is achieved using four approaches on four different process scenarios based on different 

levels of noise so as to evaluate their effects on the performance. Each approach combines a feature extraction 

method, either Multi-way Principal Component Analysis (MPCA) or Multi-way Independent Component 

Analysis (MICA), with a classification method, either Artificial Neural Network (ANN) or Support Vector 

Machines (SVM). The performance obtained by the different approaches is assessed and discussed for a set of 

simulated faults under different scenarios. One of the faults (a loss in mixing power) could not be detecteddue to 

the minimal effect of mixing on the simulated data. The remaining faults could be easily diagnosed and the 

subsequent discussion provides practical insight into the selection and use of the available techniques to specific 

applications. Irrespective the classification algorithm, MPCA shows to render better results than MICA, hence 

the diagnosis performance proves to be more sensitive to the selection of the feature extraction technique. 
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1. Introduction 

Batch and semi-batch processes are used frequently in biotechnological industries to generate high value-added 

products in relatively small volumes. Batch processes are characterized by finite duration, unsteady behavior, 

high conversions and most importantly, a recipe-driven operation. Their monitoring is of utter importance to 

meet specifications and strict quality requirements, as well as for process optimization and safety, waste 

reduction, and to enhance general process knowledge.  

These processes may suffer a lack of reproducibility from batch to batch due to disturbances and the absence of 

on-line measurements of quality parameters. Variations among batches may be difficult for an operator to 

discern and it may be difficult to foresee their adverse effects on the final product quality. Often, disturbances or 

operational problems, and the subsequent poor quality of the final product, may remain undetected for a long 

time, until significant expenditure has been incurred. 

The penicillin production process has been used by several authors [1,2,3,4,] as a case study to address the 

problem of batch process monitoring and Fault Detection and Identification (FDD) and it is considered a 

benchmark for batch processes as the Tennessee Eastman process is for continuous processes.  

There is an extensive literature on the modelling of penicillin production but many of the reported models are 

too simplified or do not consider the effects on biomass growth and penicillin production of important operating 

variables, such as temperature, pH, agitation power or substrate feed flow rate. 

The mechanistic model used in this work [1] considers input variables such as pH, temperature, aeration rate, 

agitation power and feed flow rate of substrate, introduces the CO2 evolution term and uses experimental data to 

improve the simulation of penicillin production by extending the existing mathematical models [1,3]. Some 

minor modifications to this model were made and explained in the next section. 

On the other hand, several techniques have been developed for process monitoring and diagnosis of chemical 

processes. These techniques can be broadly classified into three categories: model-based techniques, expert 

systems and data-driven methods [5,6].  

The first two categories have been developed earlier in history. However, the advent of an increasing 

computational capacity and the need for operating ill-understood processes have expanded the attention to the 

third category, which establishes models on the basis of historical data with minimal input of knowledge. For 

instance, the complexity of biochemical processes such as the production of antibiotics makes it difficult to 



create a detailed and practical model. Instead, empirical models based on process historical data to supplement 

simple mechanistic models are available [7].  

As a result, a growing interest in the use of multivariate (MV) techniques in batch process modelling and FDD 

has been observed in literature [8,9,10]. A large part of the available literature is focused on the development 

and application of so called latent variable methods like Principal Component Analysis (PCA) and Partial Least 

Squares (PLS). These methods can handle highly correlated data sets and allow analysis and visualization which 

aids in the understanding of process data and possibly of the process itself. Furthermore, these MV techniques 

are well-suited for on-line Statistical Process Monitoring (SPM) and FDI of batch production and 

biotechnological processes [4]. 

Pioneering work in the specific area of fault detection and identification (FDI) for batch processes was 

performed by Nomikos and MacGregor [11,12] and has been successfully applied to industrial processes on 

several occasions [13,14]. Here, the basis is to model the common-cause variation present in collected data 

obtained under Normal Operating Conditions (NOC). This model is subsequently used to determine whether a 

new batch corresponds to this historically recorded normal operating behavior or not. Therefore, the monitoring 

performance depends heavily upon this NOC data [15].  

Deviations in process variables during the progress of a batch can provide information about product properties 

and an estimation of the quality of the final product well before the completion of the batch. Process monitoring 

and fault diagnosis have been very effective in achieving this goal of process supervision [16]. More 

specifically, Multi-way Principal Component Analysis (MPCA) has been successfully applied to batch 

processes in order to monitor the process, identify when it shifts to a new operating condition and detect and 

diagnose abnormalities [12].  

In the last two decades a plethora of techniques for FDI have been developed and reported [17] and it has 

become difficult for practitioners in research and industry to choose a method. Moreover, it is the opinion of the 

authors that for most commercial processes suitable techniques exist for monitoring and diagnosis. As such, this 

work is a collaborative effort in view of establishing guidelines for the choice between some techniques, rather 

than extend the existing, which have been reported to perform successfully in bioprocesses [18,19]. This paper 

reports the first study in this line of research and the specific purpose is to find out whether the choice for Multi-

way Principal Component Analysis (MPCA) or Multi-way Independent Component Analysis (MICA) as feature 

extraction method and the choice for Artificial Neural Networks (ANN) or Support Vector Machines (SVM) as 



classification technique is important for the purpose of finding a suitable fault diagnosis strategy in batch 

processes.  

The comparison among the four combined approaches that results from selecting one technique from the feature 

extraction methods and one from the classification is done for several process scenarios with different levels of 

noise in the data so as to assess how noise affects the diagnosis performance of the individual approaches as 

well as generalize the result of the best approach.  

The paper is organized as follows. Materials and methods are summarized in section 2. Section 2.1 describes the 

Penicillin production process as case study, Section 2.2 presents the statistical techniques that are used as feature 

extraction methods for comparative purposes, Section 2.3 describes the techniques used as classification 

algorithms and Section 2.4 summarizes the integration of a feature extraction with a classification technique as 

the fault diagnosis general approach broken out in two stages, the monitoring step and the fault diagnosis 

procedure. Section 3 reports the Results, Section 4 exposes some relevant discussions and finally, conclusions of 

the work are presented in Section 5. 

 

2. Materials and Methods 

2.1 Case study  

The case study addressed is an extension of the model developed by Birol et al.[1] and is implemented in 

Matlab. The original nomenclature is followed in Table 1, which provides the data for the case study. The 

extension of the original model consists of the inclusion of a more practical PI controller for temperature and 

pH, as well as the related variables: acid flow rate (Fa), the base flow rate (Fb) and the heating/cooling water 

flow rate (Fc). The static form of the PI control algorithm is used according to the parameters values given in 

Table 1 and the equations determining the control action Un
k as a function of the error En

k and the integral and 

proportional signals (In
k  and Pn

k): 
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Set points (Yn
SP) are established at pH=5 and T=298 K, and the derivative time dt is set to match the sampling 

interval (0.02h). Furthermore, the substrate feed rate (F) is controlled by an on/off controller, which switches 

operation to fed-batch when the glucose concentration reaches the 0.3 g/l threshold. 

 

 

Table 1. Initial conditions, kinetic and controller parameters for normal operation 

Parameter 

symbol 
Parameter description Value Unit 

Initial conditions 

CCO2 Carbon dioxide concentration 0.5 mmol/l 

CH Hydrogen ion concentration 10-5.1 mol/l 

CL 

Dissolved oxygen concentration (=CL
* at 

saturation) 
1.16 mg/l 

P Penicillin concentration 0 g/l 

Qrxn Heat generation 0 cal 

S Substrate concentration 15 g/l 

T Temperature 297 K 

V Culture volume 100 l 

X Biomass concentration 0.1 g/l 

 

 

F Feed flow rate of substrate 0.042 l/h 

Fa Acid flow rate - l/h 

Fb Base flow rate - l/h 

Fc Heating/cooling water flow rate - l/h 



 

Pw Power density 600 W 

sf Feed substrate concentration 600 g/l 

 

Controller parameters 

K1
c Proportional part of Acid in pH control 1 . 10-4 - 

τ1I Integral proportion of Acid in pH control 8.4 h 

K2
c Proportional part of Base in pH control 8 . 10-4 - 

τ2I Integral proportion of Base in pH control 4.2 h 

K3
c Proportional part of cooling in Temperature control 70 - 

τ3I 

Integral proportion of cooling in Temperature 

control 
0.5 h 

K4
c Proportional part of heating in Temperature control 5 - 

 

 

The initial values of some of the input variables (feed substrate concentration, substrate feed temperature, power 

density and air flow rate) and the set points of the controlled variables (temperature, pH and substrate feed rate 

in the fed-batch stage) were randomly sampled from independent normal distributions with the mean values 

reported in Table 1 and standard deviations equal to 1% of their corresponding mean. 

Noise was also added to the input and output variables at four different levels (0%, 1%, 5% and 10%) in the 

model at four different levels. Different nominal values, from which the noise is calculated, are set for each 

input,controled and output variable. 

In order to simulate Abnormal Operating Conditions (AOC), three different faults are considered, namely: 

(1) decrease in the agitation power to values between 30 and 200 W,  

(2) increase of the saturation constant (Kx) from 0.15 g/l (nominal value) to values ranging from 0.3 to 0.9 g/l 

and 

(3) decrease of the substrate feed rate in the fed-batch stage to values ranging from 0.001 to 0.01 l/h.  



It is worthy to notice that faults 1 and 3 are likely caused by faults in the equipment, while fault 2 would likely 

be generated by human error (the culture contamination or the addition of an impure substrate), which affects 

the saturation constant value. The sampling time was set to 0.02 h by default, as in the original work [1]. In the 

process, a fed-batch operation follows the batch operation when the carbon source (glucose) almost depletes. All 

the simulated batches lasted four-hundred hours.  

 

2.2 Feature extraction methods 

Fault diagnosis in batch processes requires previous data arrangement and standardization and a feature 

processing step. Unfolding, centering and scaling are applied in this paper as part of the data representation 

before a feature extraction step. 

Feature extraction techniques allow reducing the number of process variables to few linear combinations, called 

components, that represent the major sources of variation in the original variables. Two latent variable 

techniques, Multi-way Principal Component Analysis (MPCA) and Multi-way Independent Component 

Analysis (MICA), are applied and compared. A description of these techniques will be presented in the next 

sub-sections. 

2.2.1 Data pre-processing: unfolding, centering and scaling 

Multi-way feature extraction methods (MPCA and MICA) have been used as an extension of SPC methods to 

batch processes. These techniques project the information contained in the process-variable trajectories down 

into low-dimensional latent variable spaces, allowing summarizing the correlations across different variables 

and time instants. 

In a typical batch run, j=1,2,...J variables are measured at k=1,2,...K time intervals throughout the batch and this 

data is reproduced on several i=1,2,...I batch runs. The whole data is arranged in a three-dimensional matrix 

X (IxJxK) [11].  

Neither PCA nor ICA can be applied directly to such matrix. The so called unfolding procedure re-arranges the 

data into a two-dimensional matrix. MPCA and MICA are equivalent to unfolding the three-dimensional array 

X  into a large two dimensional matrix X and then performing the original PCA and ICA. 



X is arranged batch-wise into the matrix X (IxKJ), the most meaningful way of unfolding matrices for 

analyzing and monitoring batch processes [11,12], as it is shown in eq. 5. 

111 121 1 1 112 113 1

211 221 2 1 212 213 2

11 21 1 12 13
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Then the data is mean centered and scaled. Centering is done by subtracting the mean of each column of the 

matrix X. The time observations in each column of the centered matrix are also scaled to unit variance when 

divided by their standard deviation so as to give equal weight to each variable at each time interval. This kind of 

scaling is typically named as auto scaling. X* matrix is the result of this data standardization step.                                                      

( )
( )

* X mean X
X

std X

-
=

     
                                                                                                                   (6)  

2.2.2 Multi-way Principal Component Analysis (MPCA) 

 

MPCA was introduced by Geladi et al., in 

1987 [20] to permit the PCA application to three-way data arrays. MacGregor and Nomikos [21] and Nomikos 

and MacGregor [12] were able to show that MPCA was well suited to handle multi-way batch data in the 

context of process monitoring. 

MPCA is  performed on the batch-wise unfolded, mean-centered and scaled data matrix. 

MPCA decomposes the standardized data matrix X* into a summation of R products of score vectors (tr) and 

loading matrices (pr) plus residuals (E), which are as small as possible in a least square sense. 

[ ][ ]
1

R
T* T T T T T

r r
r

X t p E tp E tp tp t t p p tp
=

= + = + = + = ºå                                     (7)                                        



where R is the number of retained principal components. Usually, a few principal components can express most 

of the variable correlations when the variables are highly correlated. Since the columns of t  are orthogonal, the 

covariance matrix of the data is: 

1

1
T TS X X p p

I -
» = L                                                                                                                      (8)                                        

where 
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The score vector ti is the ith column of t  and λi are the eigenvalues of the covariance matrix in descending 

order [22].  

MPCA is very useful for batch process data analysis because (1) it is effective in modelling correlation between 

variables across the time length of batches [23] and (2) computational efforts are very low compared to 

explicitly dynamic models. 

Some authors have started using Unfold Principal Component Analysis (UPCA) as a better name for the MPCA 

method, because MPCA is not a multi-way method in the strict sense unlike the so called Tucker models and 

PARAFAC [24,25]. 

2.2.3 Multi-way Independent Component Analysis (MICA) 

Independent Component Analysis (ICA) has been developed as a technique that extracts statistically 

independent and non-Gaussian components from multivariate observed data. Whereas PCA finds a set of 

uncorrelated signals, ICA finds a set of independent source signals.  

A generic ICA model for any continuous process is: 



1 1
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where [x1(k), x2(k), …, xj(k)], is a set of J variables observations at each time interval k, A is an unknown mixing 

matrix that corresponds to the loadings matrix p in PCA and s is the independent component data matrix that 

corresponds to the scores matrix t. It can be assumed that variables observations are generated as a linear 

mixture of R (≤J) unknown independent components.  

For a batch process, ICA can be applied to the unfolded, mean-centered and scaled data matrix as done for 

MPCA, thereby resulting in the MICA technique [2,3,26].  

When K observations are available and there is data for I batches, the preceding equation can be rearranged as: 

X AS=   being 
JK I R IX ,S´ ´ÎÂ ÎÂ                                                                                           (10) 

where R is the number of independent components. MICA extracts the independent scores for NOC batches and 

faulty batches as in MPCA.  

 

2.3 Classification methods 

Process fault detection with artificial intelligence techniques has been studied by Venkatasubramanian et al. 

[27], Kavuri et al. [28], Himmelblau et al. [29], Watanabe et al.[30] and others. Most of these techniques are 

essentially classification methods for assigning classes to faulty conditions. In this work, two classification 

methods, ANN and SVM, are implemented and evaluated. Both ANN and SVM are black-box methods, suitable 

for situations where first-principles knowledge is lacking or difficult to achieve. 

2.3.1 Artificial Neural Networks (ANNs) 

ANNs belong to the most popular pattern recognition methods [31] and are models which capture nonlinear 

reltionships between variables for otherwise unknown processes.  To use them for fault diagnosis, ANNs are 

trained on historical or simulated process data with the aim of detecting and diagnosing a specified number of 

faults by differentiating various abnormal patterns from the normal pattern in the output data. 



ANNs can be interpreted as a network of massively parallel distributed processing units (neurons) that can store 

experimental information and make it available for future use [32]. The nodes and information flows are set up 

in such a way that the resulting network has signal inputs and outputs. 

 

The Multilayer perceptron (MLP) architecture is applied in the ANN method used in this work. A single neuron 

in the MLP is represented mathematically by the following equations, as reported in [33]: 

0

r

k kj j
j

v w x
=

=å                                                                                                                                      (11)     

( )k ky vf=
                                                                                                                                          

(12)                                         

where r is the total number of inputs to neuron k, wkj represents the input weights to neuron k, xj represents the 

output values from the previous layer, vk is the input to the transfer function of the neuron  k,   is the transfer 

function and yk is the output from neuron k. 

Typical transfer functions include linear functions, the Heaviside function, the logistic function and hyperbolic 

tangent functions. The values of the synaptic weights are determined by training the network using the Back-

Propagation Algorithm (BPA), which consists of two passes through the network layers and is the most widely 

spread calibration algorithm in ANN [32]. In our study, the Levenberg-Marquardt BPA was used. The input data 

consist of the scores obtained from MPCA or MICA, while the output data consists of the predictions values to 

each trained fault.  

2.3.2 Support Vector Machines (SVM) 

As ANN, SVM are able to classify linear and non-linear cases. SVM method is based on the statistical learning 

theory and the Structural Risk Minimization (SRM) principle developed by Vapnik [33]. According to the SVM 

theory, a single global optimum exists for the numeric parameters of the models obtained from SVM so that the 

calibration stage (data models construction) is straightforward [35].  

Practically speaking, the N-dimensional input data set is mapped into a feature space via a selected kernel 

function (e.g. linear, polynomial and Gaussian functions). In this feature space, the SVM-based classification is 

posed as the maximization of the model performance and solved as a quadratic optimization problem, 

identifying optimal separation hyperplanes, each of which exhibits a maximum linear margin (the largest 



distance to the nearest training data from any class) and a number of support vectors (such observations close to 

the optimized hyperplane). The more complex the hyperplane is and the larger the dimension of the data, the 

more support vectors will be needed.  

Yélamos et al. [36], Chiang et al. [37], Kulkarni et al. [38], among others, describe SVM in detail as well as the 

specific equations. Yungfeng et al. [39] apply SVM as classification algorithm for detecting faults using the 

penicillin production process as case study.  

SVM-based diagnosis models are also obtained in this work and used exactly in the same way as the ANNs, i.e. 

with the scores obtained from MPCA or MICA as inputs and performing the predictions of each sample to the 

faulty classes as outputs.  

 

2.4 Integration of feature extraction and classification methods  

Fault detection is performed using MPCA. Next, this work analyses four different options for diagnosis, which 

result from combining two feature extraction methods (MPCA and MICA) and two classification methods 

(ANN and SVM). The resulting two-step procedure is detailed in Figure 1, and the two steps are explained in 

the following sub-sections. 

2.4.1 Monitoring step 

One way of monitoring either continuous or batch processes is to use Multivariate Statistical Process Control 

(MSPC). Specifically, batch process monitoring can be divided into three phases: initial, training and application 

phases, as described by Ramaker et al. [40]. 

The initial phase consists of collecting a set of historical data from real-time measurements of a NOC batches 

set. This phase can be a bottleneck because of poorly designed structures of the database. In this sense, the 

measured data from all NOC batch runs are arranged in a three-way matrix as stated. Moreover, in this phase 

previous knowledge can be applied to select good batches. 

In the training phase, suspicious batches which are not considered to be under NOC are removed from the 

historical data and then, a representative set of NOC batches is grouped and used for constructing an empirical 

model. The most common monitoring model to use, produced in this work, is an MPCA model.  

The number of principal components needed to construct an MPCA model that describes adequately the normal 

behavior of a batch operation can be found on the basis of several criteria [11]. One commonly used criterion is 



the broken-stick rule [41], which judges whether a principal component adds any structural information about 

the variance in the data or only explains noise. Therefore, the broken-stick rule is applied to the selection of the 

number of retained principal components in the MPCA model.  

 

Finally, in the application phase, batches are monitored by means of statistics derived from the training phase. 

Usually more than 50 batches are required for obtaining a representative sample of sufficient size to correctly 

estimate confidence limits for the normal operating region [42]. After projecting NOC and AOC batches onto 

the NOC model, statistical measures are calculated and compared to the corresponding control limits from the 

reference distribution. 

Typically the SPE (or Q statistic) and Hotelling’s T2 statistic are used to represent the variability in the Residual 

Space (RS) and the Principal Component Space (PCS) respectively [22]. New batches can be projected onto the 

plane defined by the PCA loading vectors to obtain their scores ( )i ,new new it x p= , and the residuals 

( )new new newE x x= - , where 
T

new R,new Rx t p= , R,newt  is the 1 R´  vector of scores from the model and 

Rp  is the JK R´  matrix of loadings.  

The batches can be compared by plotting their t scores and the sum of squared errors, given by the Q statistic 

[11]. 
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=

=å                                                                                                                                 (13) 

The Q statistic is calculated through the summation of the squared residuals for a specific batch and represents 

the deviations that are not captured in the retained PCs. The Q statistic is used to compare the residuals of new 

batches to an upper control limit (Qα), defined using a set of residuals from NOC batches.  

The control limit of the Q statistic is calculated according to the equation in [43]. 
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In addition, the T2 statistic represents the Mahalanobis distance between new data and the center of the normal 

operating condition data in the space spanned by the principal components. 

At the end of the batch, the T2 for batch i is calculated as follows [44]: 

( )
( )

2

2 1
1

T -
i r r R ,I -R

R I
T t S t F

I I - R

-
= »                                                                                                      (15) 

where I is the number of batches in the reference set, tr is a vector of R scores, S is the (RxR) covariance matrix 

of the t-scores calculated during the model development, R is the number of PCs retained in the model and FR,I-R 

is the F-distribution value with R and I-R-1 degrees of freedom. 

For new observations or batches (i.e., not part of the calibration data), the upper control limit for this statistic 

(T2
lim) is [45]:                                                          

( )( )2
2

1 1
lim ,R,I -R

R I I
T F

I IR a
+ -

=
-

                                                                                                        (16)                             

For a new observation or batch inew, if 
2 2

new limT T<  and newQ Qa< , one considers the current batch to be in-

control with 100(1-α)% confidence. Otherwise, the batch is identified as out of control. 

Since the principal component subspace typically contains normal process variations with large variance and the 

residual subspace contains mainly noise, if a sample exceeds only the T2 limit but does not violate the SPE limit, 

then this can be interpreted as a shift from the usual operating region without breaking this normal correlation 

structure. This can be due to faults, but also due to desired changes in the process operation. Naturally, the T2 

statistic is thus used to detect faults associated with abnormal variations within the model subspace, whereas the 

Q statistic is used to detect new events that are not taken into account in the model subspace [44].  

In this work, fault diagnosis is addressed at the end of the batch. As such, this would not allow improving the 

past batch in practice. However, it is noted that several authors have addressed this problem in the past 

[2,11,15,26,46]. 

2.4.2 Fault diagnosis procedure 

Once new batches are monitored by their projection onto the previous NOC model, the next stage is the 

diagnosis of the faulty batches. In order to create generalized classification models, NOC and AOC batches are 



gathered in the same data set and then centering and scaling operations are applied to this set. The feature 

extraction techniques are used for dimensionality reduction before applying the classification algorithms. 

Furthermore, cross validation is done in this work in order to assess better the classification performance of the 

different approaches. A 10-cross validation is chosen so that ten models considering both nominal and faulty 

batches can be tested with their respective validation sets. 

The number of principal components in the models is retained by the broken-stick rule and the independent 

components are determined by a graphical technique similar to the SCREE test of PCA [47]. The scores Tf are 

used as inputs of the classification algorithms. Regarding  the ANN algorithm, the number of inputs is 

automatically set to the number of components. The remaining architectural parameter to optimize in ANN is 

the number of hidden nodes, which is optimized based on the obtained cross-validated classification 

performance. The number of outputs is the same as the number of faults to classify. 

Regarding SVM as classification algorithm, the architectural parameter to optimize for each scenario and the 

selected FE technique is the type of kernel function and its parameter (e.g. order for polynomial kernel, width 

for Gaussian kernel). An overall measure for both sensitivity and specificity, named the F1 score, is used to 

assess the diagnosis performance for each class separately and is computed as follows [48,49] 

2
1

Sensitivity Specificity
F

Sensitivity Specificity

´ ´=
+                                                                                              

(17)  

 

3. Results 

Figures 2 to 4 show sets of 50 simulation runs for three different scenarios: batches under nominal operating 

conditions (NOC), batches with fault 2 (increase in the saturation constant) and batches with fault 3 (decrease in 

the substrate feed rate in the fed-batch stage), all of them with 1% of noise level in input and ouput data.  

Figure 2 shows the trajectories of the biomass concentration and illustrates how the decrease of the substrate 

feed rate (fault 3) affects the biomass production: those flow rate below the initial value for normal operation are 

not enough for the biomass growth and probably just for the cells maintenance. On the other hand, the culture 

contamination reflected in an increase of the saturation constant (fault 2) results in a slower production of 

penicillin and more conversion of substrate to biomass.  



Figure 3 shows the trajectories of the penicillin production. The decrease in the substrate feed flow rate is shown 

again to affect the penicillin production. Furthermore, it also shows that an increase in the saturation constant 

delays the penicillin production. 

Figure 4 shows the trajectories of the dissolved oxygen concentration observing that the decrease in the 

substrate feed flow rate causes higher concentrations of dissolved oxygen in the culture medium because the 

amount of biomass is smaller and because of that, the oxygen requirements. 

As previously reported [42], more than 50 batches are used to estimate the confidence limits in the normal 

operating region. Also, 50 AOC batches are taken to construct representative diagnosis models for each fault. 

The NOC model was just built upon as many NOC batches as faulty batches used in the diagnosis step (100). 

The high ratio of faulty to normal batches is unrealistic from the point of view of industrial practice yet it does 

not affect our conclusions since a comparitive study is reported, rather than an absolute evaluation of fault 

diagnostic performance. Thus, UPCA or MPCA was performed on hundred batches under NOC, simulated with 

1% of noise level. Figure 5 plots the eigenvalues corresponding to this analysis. According to this plot, two 

components were selected for the monitoring and detection model, which jointly capture 59.5% of the total 

variance.  

Figure 6 and 7 report the Q statistic and T2 values for the NOC batches with 1% of noise level in data and one 

can observe in there that both statistics remain below their control limits for all the batches. Similar results are 

obtained from analysing NOC batches in the rest of process scenarios (different noise levels), however these are 

not graphically reported in the paper. 

Regarding the batches experiencing abnormal operating conditions (AOC), 50 batches per fault were simulated 

and monitored. Figure 8 shows the plot of the two first scores obtained from the projection of the NOC batches 

onto the monitoring model, as well as the scores corresponding to the AOC batches projected onto the same 

model. One can observe in this biplot that the batches corresponding to Fault 2 and 3 are well separated from the 

NOC batches and from each other, in contrast to the batches corresponding to Fault 1 (decrease in the agitation 

power) that are found in the same region as the NOC batches.  

As this plot only considers the two first scores from 100, obtained by the broken-stick rule and representing the 

59.5% of variability, the other PCs could be expected to allow discerning between NOC and Fault 1 batches. 

However, an evaluation of some biplots for some left PC's (not shown) indicated that this is not the case. For 

instance, fault 1 batches cannot be discriminated from the NOC set because (1) it is not a priori true that a faulty 



situation also results in a distinguishable symptom and (2) the UPCA model is calibrated only on NOC batches 

and is therefore not oriented at capturing differences between NOC and AOC batches. 

Figures 9 and 10 show the Q statistic and T2 values in logarithmic scale for the batches experiencing faults 1 to 

3. The applied confidence level for the calculation of the UCL is 99%. Q and T2 statistics for the batches with 

fault 3 are over the UCL. In the case of the batches with fault 2, the Q statistic value is over the UCL for all of 

them but in the case of the T2 statistic, 12 batches are below the UCL and 38 batches over. In this sense, as AOC 

batches are not taken into account in the model subspace, the Q statistic detects all the faulty batches as new 

events. Regarding  batches with fault 1, both statistics are below the UCL for all of them, which means that this 

fault is not detected and all these faulty batches are considered as batches under NOC. A closer inspection of the 

state variables indicated that their patterns were hardly affected by this fault. As such, fault 1 was ignored and 

excluded for the diagnosis step that follows. The results showed in Figure 9 and 10 for the Q and T2 statistics are 

quite similar to those obtained with the other process scenarios but they are omitted in the paper. 

The same assumptions for monitoring hold for calibration and validation. Thus a minimum set of batches is also 

considered for constructing diagnosis models: 100 AOC batches (50 fault 2 and 50 per fault 3) and 100 NOC 

batches. The 10-fold venetian blind cross-validation results in selecting 10 normal batches and 5 batches of each 

faulty condition (total = 20) in a single validation set.  

The feature extraction techniques retain four components (by means of broken-stick rule as explained before) 

for the ten projection models, using both MPCA and MICA and a different level of noise in the input and output 

variables (0%, 1%, 5% and 10%). Table 2 shows the percentage of variance with those retained components 

within the original variables using both feature extraction techniques and according to the corresponding 

scenario.  

 

Table 2. Variability percentage with the retained components by broken-stick rule for both MPCA and MICA 

techniques and all the noise levels in data. 

Retained variance (%) 

Feature extraction technique Noise level (%) 

0 1 5 10 



MPCA 98 86 81 41 

MICA 98 86 81 41 

 

 

 

Table 3. Number of hidden nodes optimized using both MPCA and MICA with ANN for all the noise scenarios. 

Number of hidden nodes 

Feature extraction technique Noise level (%) 

0 1 5 10 

MPCA 1 3 2 1 

MICA 14 9 9 7 

 

The diagnosis or classification step consists of applying properly ANN and SVM as classification algorithms 

using the scores from MPCA and MICA as inputs. Regarding ANN, the analysis has been restricted to a single 

hidden layer network since this is capable of mapping all the data [50]. The number of tangent sigmoid nodes 

which performed the least mean squared normalized error (MSE) and the best classification performance is 

reported in Table 3 according to the feature extraction technique used and the noise scenario. The networks have 

two logistic output nodes as the number of faults to classify.  

Regarding SVM as classification technique, Table 4 reports the kernel functions that offered the best 

classification performance when applying previously either MPCA or MICA and for the different scenarios. 

 

Table 4. Kernel function optimized using both MPCA and MICA with SVM for all the noise scenarios. 

Kernel function 



Feature extraction technique Noise level (%) 

0 1 5 10 

MPCA Linear Poly 2 Poly 2 Poly 2 

MICA Poly 3 Linear Poly 3 Poly 3 

 

The diagnosis results for each combination (MPCA&ANN, MPCA&SVM, MICA&ANN and MICA&SVM) 

and for each noise scenario (0, 1, 5 and 10%) are summarized in figures 11 to 14. The performance was 

evaluated according to the F1 score as a mean from every time observation per test batch and from the whole 

batches included in the ten validation sets.  

Figure 11 shows the mean diagnosis performance considering the three classes of batches and what can be 

observed and concluded from these results is that the combination of either ANN or SVM with MPCA renders a 

significantly better diagnosis performance than the combinations with MICA. Therefore, the choice and 

optimization of the latent or feature extraction method is more important than the selection of the classification 

technique as can be observed for the four different process scenarios. In the case of the 10% noise scenario, the 

performance is low in comparison to the rest of scenarios, however it is important to consider that the retained 

components with the broken-stick rule only explain the 41% of the variance of the process variables, which 

could be the main reason of such bad performance. A further study considering the percentage of retained 

variance with the components would corroborate this assumption.  

Breaking down the results, Figure 12 shows the diagnosis performance for the nominal class (batches under 

NOC) for the 16 situations and Figures 13 and 14 do the same for the Faults 2 and 3. These figures reveal that: 

 In general, for all the process scenarios and a given classification method, MPCA leads to better results 

than MICA. The only exception is found for the 10% noise scenario, for which the faults are poorly 

classified with all the combinations. 

 In general, for the four combinations between feature extraction and classification techniques, higher 

noise levels lead to worse diagnosis performance, which it is not surprising. There is an exception 

however in the normal class which shows apparently a good performance in the highest noise scenario 

when using MICA.  



 Fault 3 is well diagnosed no matter the combination of feature extraction and classification techniques 

used. As previously pointed out, the exception is the 10% noise scenario probably because of the high 

noise in data and low variance in the extracted components. 

 MICA performs better when it is combined with ANN rather than with SVM. 

 MPCA plus SVM combination seems to be more affected by either high noise levels or low variance 

percentages explained by the retained principal components. 

Both the expected and unexpected results will be discussed in more detail in the next section. 

 

4. Discussion 

The presented results point out the benefits of the step-wise procedure (feature extraction step plus fault 

diagnosis step) in terms of the final classification or diagnosis performance. The application of a feature 

extraction technique allows dimensionality reduction and obtaining features that summarize the information in 

the data. Such features retain a given percentage of the variance of the original variables. Moreover, as these 

feature extraction techniques are multivariate statistical techniques, they allow monitoring new batches in order 

to know whether they are successful or faulty previously to their diagnosis. Only then, i.e., once the diagnosis 

models have been constructed with historical batches and the appropriate techniques, the diagnosis of new and 

current batches becomes an easier task.  

The comparison among feature extraction and classification techniques was performed with different noise 

scenarios (0%, 1%, 5% and 10%). The combinations of both classification techniques used in this work with 

MICA allow concluding that the best approaches are those in which MPCA is applied as feature extraction no 

matter the classification technique used for diagnosis. Also the reported results indicate that more effort has to 

be devoted on selecting the feature extraction technique rather than on the diagnosis algorithm.  

The MICA&ANN combination works well when there is no noise or with low level of noise in data (1%), and 

the performance decreases when dealing with 5% noise. In fact, batches with 1% of noise show the best 

diagnosis performance, which can be explained by the 86% of the retained variance with the PCs in comparison 

to the 81% with 5% of noise. However, retaining less variance below a certain high threshold may sometimes, 

improve the diagnosis, rather than retaining a higher variance, which can explain why the diagnosis performance 

is better in the case with slight noise in the data (1%) than without noise.  



In fault-less batches, MICA&SVM combination seems to be more affected by noise, although the 10% scenario 

shows an unexpected behavior.The predictions obtained from this combination and this scenario, show that the 

reason for a high diagnosis performance is that faulty batches are simultaneously diagnosed as both faults, 

which suggests that for this high level of noise the MICA&SVM approach does not recognize differences 

among faults. 

The sensitivity part in the F1 score accounts for the right diagnosed batches divided by the total number of 

batches, and this is therefore calculated taking into account the half of a batch when it is double-classified. One 

third of a batch would be counted in the case of three simultaneous classes and so on. In the same way, 

specificity counts the right diagnosed batches divided only by the number of batches diagnosed in each class. 

This is the reason why F1 index reflects such modifications in the final performance.   

According to these results, there are no significant differences between ANN and SVM when either of these are 

combined with MPCA, which indicates that the decision-making should be concentrated on the feature 

extraction technique. In general, these results can be useful for diagnosing other processes.  

Finally, further research issues are described here. For other highly non-linear processes it will be interesting to 

simulate some different faults as well as to increase the number of NOC historical batches for constructing the 

diagnosis models. It will be also worthy to investigate other types of scaling such as group scaling before 

selecting and applying the feature extraction technique and to consider a specific percentage of variance in the 

retained components.  

 

 

5. Conclusions 

Different available techniques were applied on a benchmark fermentation process with the aim to provide 

guidelines for the general problem of selecting data-based methods for modelling and diagnosing 

biotechnological processes that may be ill understood on a mechanistic level. The comparative study presented 

focuses on the selection of a practical combination of feature extraction and classification techniques that can be 

of general use for fault diagnosis of highly non-linear batch processes. 

Two feature extraction techniques, MPCA and MICA, and two well-known non-linear classifiers, ANN and 

SVM, were used for this purpose. As such, four approaches were evaluated, respectively tagged as MPCA-



ANN, MPCA-SVM, MICA-ANN and MICA-SVM. The feature extraction techniques (MPCA, MICA) were 

effective at reducing the dimensionality of the inputs to the classification algorithms (ANN, SVM). This was 

based on the application of the so called broken-stick rule. The ANN number of hidden nodes and the SVM 

kernel function were optimized to improve directly the classification performance. All the approaches were 

tested and assessed for several scenarios in order to generalize the study regarding to the combination between 

the proposed techniques.  

The results obtained allow concluding that regarding fault diagnosis, the selection of the classification method is 

not as decisive as the choice of the feature extraction technique, which is the issue to be stressed in the design of 

a fault diagnosis approach with the available techniques. This is demonstrated in all the scenarios tested in the 

current study, which is applied  to a biotechnological benchmark process. 
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List of symbols 

 

A: Unknown mixing matrix 

 

Ca, Cb: Acid and Base molarity 

CCO2: Carbon dioxide concentration 

CH: Hydrogen ion concentration 

CL: Dissolved oxygen concentration 

dt: Derivative time in the control system 

E: Residuals 



EN: Error signal at sample N 

F: Feed flow rate of substrate 

Fa: Acid flow rate  

Fb: Base flow rate 

Fc: Heating/cooling water flow rate 

fg: Air flow rate 

 

F1: Diagnosis performace index 

f: Transfer function in the ANN 

I: Number of batches 

Ik: Integral signal at sample k 

Ik-1: Previous integral signal 

J: Process variables 

k: neuron 

K: Time observations  

Kc: Proportional gain in PI control  

 

Kx: Contois saturation constant 

p: Loading vectors in PCA 

P: Penicillin concentration   

Pk: Proportional signal at sample k 

Pw: Power density 

 

Qi: Sum of the squared errors or Q statistic 



Qrxn: Reaction heat rate  

Qα: Control limit of the Q statistic 

r: Total number of inputs to the neuron 

R: Number of principal and independent components and  

S: Substrate concentration, Covariance matrix and Independent component matrix 

sf: Feed substrate concentration 

 

T: Reactor temperature  

t: Scores 

Tf: Feed temperature of substrate 

Ti
2: Hotelling’s T squared for each batch 

2
limT : T squared control limit 

U: Control signal 

V: Culture volume 

vk: Input to the transfer function of neuron   

wkj: Input weights to neuron 

X: Biomass concentration and Unfolded data matrix 

X*: Centered and scaled data matrix 

X : Three-dimensional data matrix 

xj: Output values from the previous layer in the ANN 

Yk: Current value of the controlled variable at the sampling time 

YSP: Set point of the controlled variable 

λi: Eigenvalues of the covariance matrix 

 



τI: Integral constant in the PI control 
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